
Unsupervised Learning - Clustering



Goal of clustering

Overall objective: form a partition C1, . . . , CK of a data sample
{X1, . . . , Xn} so that ”data belonging to the same group are more
similar to each other than to data lying in different groups”

Issues:
I ”Similar” in which sense? Metric? Groups should correspond to modes,

reflect distribution structure? How to deal with qualitative data?

I Combinatorial problem: there are
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partitions with K ≤ n non empty groups
How to cluster the data in practice?

I How to choose K?



Techniques for clustering

Very diverse methods, implemented as a preprocessing stage

Three groups:

I hierarchical techniques: agglomerative vs. divisive

I (nonparametric) Bayesian methods

I partitional: centröıds, model-based, graph theoretic, spectral clustering

Most popular procedures:

I K −means

I Agglomerative hierarchical clustering

I The EM-algorithm



K -means

Input: data points in X , distance d on X , number K of clusters

The clusters are defined by means of centröıds c1, . . . , cK in X

x ∈ Ck ⇔ k = argmin
1≤l≤K

d(x , cl)

General principle:
I start with an initial clustering,

1 define centröıds by means of a given method (ex: cluster means, cluster
medians)

2 reassign the data to new clusters defined by proximity to centröıds

How many iterations?



K -means

Usually, centröıds are the current cluster means:

ck =
1

#{i : Xi ∈ Ck}
∑

i : Xi∈Ck

Xi

When the metric is the square Euclidean distance, the goal is to
minimize over c1, . . . , cK

K∑
k=1

∑
i : Xi∈Ck

||Xi − ck ||2

Minimizing intra-cell variability is equivalent to maximizing inter-cell
variability∑

(i ,j)

||Xi − Xj ||2 =
∑
k 6=l

∑
(i ,j): (Xi ,Xj )∈Ck×Cl

||Xi − Xj ||2

+
∑
k

∑
(i ,j): (Xi ,Xj )∈C2

k

||Xi − Xj ||2



K -means

Monotonicity: the within-cluster variability decreases

Convergence to a possibly local minimum

Use the function kmeans(.)



A typical application - Vector Quantization

Compress high-dimensional pixellated images into low resolution
images



Hierarchical clustering

Produce a nested sequence of clusterings

The sequence can be represented by a tree schematic (dendrogram)

Either agglomerative or else divisive

No need to specify the number K of clusters in advance



Agglomerative hierarchical clustering

Initially, start with n clusters: the singletons {Xi}
Merge the pair of singletons {Xi} and {Xj} with minimum
dissimilarity, yielding n − 1 clusters

Iterate: merge the two clusters with minimum dissimilarity

. . .

Stop when all points have been agglomerated into a single cluster of
cardinality n



Agglomerative hierarchical clustering - How to
measure dissimilarity between clusters

”Single linkage”

D(C ,C ′) = min
(x ,x ′)∈C×C ′

d(x , x ′)

”Complete linkage”

D(C ,C ′) = max
(x ,x ′)∈C×C ′

d(x , x ′)

”Centröıd linkage”
D(C ,C ′) = d(x̄C , x̄C ′)

”Average linkage”

D(C ,C ′) =
1

#C#C ′

∑
(x ,x ′)∈C×C ′

d(x , x ′)



Divisive hierarchical clustering

Start with a single cluster of cardinality n and fix a threshold λ

Determine the pair (Xi ,Xj) with maximum dissimilarity dmax

Compare dmax and t.
If dmax < λ, then stops.
If dmax > λ, form two clusters: assign Xm to Xi ’s cluster if
d(Xi ,Xm) < d(Xj ,Xm), to Xj ’s cluster otherwise

. . .



Model-based clustering

Mixture density model: fθ(x) =
∑K

k=1 ωk fθk (x)

ωk ≥ 0,
∑K

k=1 ωk = 1, θ = ((θ1, ω1), . . . , (θK , ωK ))

Consider Y , ”hidden” class label:

X | Y ∼ fθY (x)dx and ωk = P{Y = k}



Model-based clustering - The EM algorithm

Goal: find a (local) maximum for the log-likelihood

L(θ,X(n)) = Eθ

[
n∑

i=1

log

(
K∑

k=1

I{Yi = k}fθk (Xi )

)
| X(n)

]

Initialization: start with a guess θ̂(0)

Iterations:
1 E-step: compute Q(θ′, θ̂(j)) = Eθ̂(j) [L(θ′,X(n)) | X(n)] for any θ′

2 M-step: find θ̂(j+1) = argmaxθ′ Q(θ′, θ̂(j))

stops when θ̂(j+1) − θ̂(j)becomes negligible

The EM-algorithm increases the log-likelihood


